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The asymptotic behavior of the ratio p,/q, is given, where {p, (v} n=0. 1. ..}
and {g,(x): n=0, 1. 2, ...} are orthogonal polynomials with regularly varying
recurrence coefficients that are closely related. The result is applied to some classical

polynomial& € 1990 Academic Press, Inc.

I. INTRODUCTION

Let {p,(x): n=0, 1. 2,..} be a sequence of orthogonal polynomials
defined by a recurrence relation

'\‘pn(~\'):au+1pn+l('Y)+br1pr1(x)+[111p)y 1('Y) (11)

and suppose that the recurrence coefficients satisfy

Iim a,/c,=u>0, lim b,/c,=helR, (1.2)

n— s nos s

where ¢, is an increasing and positive sequence which is regularly varying
with index x>0, ie.,
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where L: R' > R ' is a slowly varying function:

hm L(xr)/L(x)=1 forevery > 0.
In [VaGe] the asymptotic behavior of the polynomials p,(c,x) is given
under the extra condition that

lim n(a,,  —a,)c,=ax
e (1.3)
lim n(b,, ,—bh,)c,=ha

H

The result 1s

) } ; 7/7 274 2 4
llm pn((.u-\ﬁ)""< n :A_n>:%(\r#}
e ! k=1 i

P ds
X exp {(bxl) | _M}

/ 2 22
0/ (x—bs) —4as

uniformly on compact sets of C\[D, E], where [ D, E] is the convex hull
of the union of {0} and [b— 24, b+ 2a]. and

. ___(CN'\‘ihk\
Zpn—2= - ],
" o 2a,

with z(x)=x+/x" — I. The root is such that = is an analytic function in
Cy[ =1, 1] for which [z(x)| > 1 if xe C' [ ~ 1, 1]. The asymptotic behavior
of the product of =, , can be found explicitly when «, =an” and b, = bhn*,
but is more complicated if the recurrence coefficients are not so smooth.
We will give a method to obtain asymptotics for the ratio

/7,;((',1»\' )/"qn((‘rl X),

where {gq,(x): n=0, 1, 2, ..} are orthogonal polynomials with recurrence
coefficients {a', bV} for which again

n> nd

lim «/c,=a, lim A/, =h (1.4)
L

H =T "

but for which the asymptotic behavior of ¢,(¢,.x) may be easier to compute
(for instance by using the explicit formulas in [VaGe]). Asymptotics of this
kind are studied by Nevai [Ne] and Maté—Nevai-Totik [MaNeTo] for
converging recurrence coefficients (orthogonal polynomials in M(q, b)). It
is clear that the recurrence coefficients {a,. b, } behave asymptotically like

ny
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the comparison coefficients {a), %}, but in order to make our method

work, we need to assume more, namely,
lim n(a —a,)c,=A,

i~
"n— s

lim n(b)—b,)ic

nllttn
"

(1.5)
- B,

where 4 and B are two real numbers. This assumption and the regular
variation imply

P s 1
11m n(a! tns] — drasy )€ = As”

n

lim n(h?

= s

S X (
[as]) h[n.s] )/'( n B*S

for every s >0, where [x] is the integer part of the real number x. The
condition (1.5) is natural: it holds for instance for all Freud weights

wix)=exp{— X7

with m a positive integer, in which case 4 and B are zero [MaNeZa]. In
this paper we will prove the following result for the polynomials

n

ﬁll('\-) = n ((1 (I )I)H( )

J=1

THEOREM. Suppose {p(x): n=0, 1, 2, ...} are orthogonal polynomials
with recurrence coefficients {(a,: n=1, 2, ...} and {b,: n=0, 1, 2, ..} such
that (1.4) and (1.5) hold, then

\,11

J(x —bs*) —da*s*
4aAs*

X{B—{» - = — }ds (1.7)
X—hs"+ [/ (x—bs™) —da's™

uniformly on compact sets of C\[ D, E'}, where [ D, E7 is the convex hull of
{0} and [h—2a, b+ 2a].

hm pu( "- )/q,,((”\/ —CXpl

B

The asymptotic behavior on the interval [D, E] is more difficult to
handle because the zeros of p,(¢,x) and of g,(c,x) are dense on that inter-
val: one actually knows the asymptotic distribution of those zeros [Val,
pp. 121-1247]. This means that both p,(c,x) and ¢,(c,x) behave in an
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oscillatory way on [ D, £ and the ratio on the left hand side of (1.7} has
many zeros and poles on [D, E]. Note that for 5> —4a* >0 the interval
[D, E] is different from [h—2a, b+ 2a]. Strong asymptotics for polyno-
mials orthogonal on an infinite interval have recently been obtained. In
these studies (sec Lubinsky and Saff [LuSa and references therein]) one
begins with the weight function instead of the recurrence coefficients.

2. PRELIMINARY RESULTS

Given the sequences {a) | and (b}, a), >0, b eR (n=0.1, 2, ..) we

define ¢'*'(x), k=0, 1, 2, ... to be the solution to the following equation

4] (k)

(k) R 0 (h)f 0 (k) N - )
un+A+lqn+l('\)+hr10kqn ('\)+an+AqH ]('\)_'\(/u (\)

satisfying the boundary conditions

g"(x)=0. gt (x)=1.

(note that ¢'"'(x)=g¢,(x)). One easily verifies that, for &k fixed, ¢'»' ,(x),
g%+ (x), and ¢f " ,(x) are three sequences (in the variable m) that
satisfy the same recurrence relation of second order. Therefore these three
sequences are linearly dependent and hence there exist ¢, and C, (possibly

depending on k& but not on ) such that

il (=gt )+ Caglh 2 L(x.

By choosing m =k + | and m = k + 2 one obtains ', and C, and the resulting

formula is

]
k) g _(‘1k+1) htdy o 0 k1) . 0 (£) .
qu k I('\)_ a() qm A Z('\)+bA’qr»1 k l('\)+ak+]q/n I\’(x)' (21)
k42

Define

pulx)=1] (a,/al) p,(x), (2.2)
7 t

then the recurrence relation (1.1} for these modified polynomials becomes

- N - a;,
PR = )y P (XD b pul) 5 P i), (2.3)
k
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Multiply (2.1) by p,(x) and (2.3) by ¢'* )’ ,(x) and substract the obtained
equations, then one finds

. , . . b —b, .
P () @h D ()= pa(x) ¢ () = ) g ()
Al
9]

d
At ~ . (At 2y .
+ Py, ()

k+2
a;
K 5 NPT} .
0 0 P l('\)qm k I('\)'
Ay 4y

Summing from k=0 to m gives (with the appropriate boundary condi-
tions)

ﬁl}l('Y) = q,,,(,\')

m—1 b()ib ] (a(? )ZA(a )3 - R
+ 2 { L [ £ A-“’}m(x).

(4] O
k=0 L Qi Ay gy o

This comparison equation will play an essential role in what follows (see
also [GeVa, (I11.8); Val, (2.2.7)] for this equation). Changing v into ¢, x
n (2.4), then dividing by g¢,,(c,x), we find

moo 1

ﬁm((‘nx )/’ﬁqm((’n'\’) = 1 + Z {B,,(k, M, .Y) + Au(k* m, \)} ﬁk((,u'\/ )r"qk((lllx)*

k=0
(2.5)
where
0 . . k+ 1) (.
Bn(k, m, '\_):bk b/\' ;H ‘Ik(‘»zx)‘]m k 1(()1'\)’ (26)
Cn ak+ 1 qm((.n'\/)
A(k m \,): qk((,nx) U‘,’:+l_al\+la;\)§l+akﬁl
m | Qi+ 1((.)1'\.) Cp u2+ !
(‘n ‘/k+1(('n~\‘)(1i,§f£), 1((.nx) (2 7)
0 " .
ak+3 qm(()n'\)
We can write this by means of an integral as
5 alnt]n .
p[nt]((jnx)/q[m](cnx) = l + . n{B”([nS], [ntzlv '\-) + An( [nS], [n[]7 x)l'

v

X PralC, X)ig (¢, X) ds. (2.8)



52 GERONIMO AND VAN ASSCHE

We now need a few lemmas to show that the integrand converges to some
function that we can find explicitly.

LemMma | [NeDe, Lemma 3]. Suppose

lim (l()/’(' =ua>0,.
nttn
o

" o-

lim A%/c, =bh,
> S

n

where ¢, =n"L(n), with L slowly varying and «2>0. If u, is a spectral
measure for the orthonormal polynomials | ¢, (x): n=0, 1. ..}. then

e s 1 pi2a (x)dy
lim | f(x/e,)1g,(x) " dug(x) == ' N# (2.9)

5

‘12 j >
n b 20 Jda™—(x —bh)
for every polynomial f.

COROLLARY 1. Given the hypothesis of Lemma 1 and 0 <s<r< 1

[re}]

: - . 2 - LM

llm Z /'/.Ml] {‘{[u.\ ]("\/‘[111]): (’\/}[/u]'(n)

"o =1
1 #b 2 (,\’S’)‘”
Tvp 24 \’,"4a~—(,\‘—/‘))"

for every integer M 2 0. Here

. —1 |
Fiu= (211)

9] - [
an} 1 qn+ l("‘/.n) (ln(V\/‘,n)

and x,, are the zeros of ¢,(x).

jon

Proof. Since t> s it follows that for » sufficiently large 2[ns]+ M <
2[nt]—1 so that by the Gauss—Jacobi quadrature formula

[ne]

; f V2 iAM
Z A/'.[nl]‘lq(n.\](xf.[m‘])lv ('\/Afm]/(u)
=1

j=

1 Mo,
:<f> | {0 3 dpgg(x).

(n

The result now follows using Lemma 1 and the fact that

lim Sl o
"o ¢,
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LEMMA 2. Suppose

lxm ayje,=a>0, lim b0 /¢, =h,

" 7w

where ¢, =n*L(n), with L slowly varving and «>0. Then for 0 <s<1,

l (€, x)/ (¢, ) 25’ (2.12)
m [ns} X ,’/q N ()n'\‘ = i 5 ENE) .
7 fodet X—=hs"+ J(x—bs*) — 4a-s~*

uniformly on compact sets of C\[D, E'}, where [ D, E] is the convex hull of
(0} and [h—2a, b+ 2a].

Proof. See [Val, p. 117].

LeMMma 3. Suppose

: O, _ : 0,
lim «)/c,=a>0, lim &) /c,=h

o S H o
where ¢, =n*L{n), with L slowly varving and x> 0. Then for 1 21>520

¢, ql_n\J( \) q‘[[n’lujl ’[]H]\J ](("I'Y) N ! (2 1'%)

0 - ; >
a[n.\]+l ([['m]((;r\) \,u’(.\’whv")z—4a2s"

uniformly on compact sets of C\[ D, E] where [ D. E7 is the convex hull of
{0} und [b—2a. h+2u].

Proof.  Let us first of all note that the function appearing on the left of
(2.13) is a rational function with poles at the zeros of the denominator.
A decomposition into partial fractions gives

l tk+1) X n b
i), M=Z E— (2.14)

0 - .
ak I qn(' ) j=1 X 7-\/4:1

where

l ( /n)q(rtl\:LH (Y/'Jl)

0
ak+1 qn(' /}n)

o

and x,, are the zeros of ¢,(x). Since ¢,(x) and ¢! %'’ | (x) satisfy the same
recurrence formula for n =k, the following Wronskian identity holds

th+ 1)

a(r:+llqn( )([ix,\i'l( ) qu+l( )qn (x)}:a(k'+lql\'(x)

so that the residues are given by

h/‘n:/.~,.,,‘{‘{A(-\',_,,)}‘Z~ (2]5)
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where 4, , i1s given by (2.11). Therefore the left hand side of (2.13) becomes

[nt] i . t2
XI: /“/‘[n/]‘(‘/{i:\]t\/_‘[rrl])l (2]())
e X 7'\/1[/:/]"(‘;:
Since
|, ] gn max ] Ih| +20 max 1 a; (2.17)
s/ WA

{see [NeDe, p. 1188]) (2.16) can be rewritten for |x| sufficiently large as

’ k
o fud 2 (\/ [m]/(n)

=2 2 Aty X)) T

k=0 j—1 X
t] s + 1
+[i /[nl]lq[m]( /[n/]) < /!n(]/ )1)’”
j=1 X = /[n/] (n RY

Consequently, for every m and |x| sufficiently large (2.17) and Corollary |
imply that
lim [i] "/ [nl]q[m]( /[m]) _ i’: 1 l ‘./, | 3(,—(}&
R Pt SR R Jadat = (yr—by
(;,Sz)m-# 1

= |.\,|m+ 1 al'

Here v =|h{+2a and d is the distance {rom x to [D, E]. Now letting
m — oo and using the fact that

| b 1 dy 1

T JAa?— (v =P NV (v — bs™) — daPs™

gives the result for {v{ sufficiently large. Now

[ne] v 12
/ In 1‘1 ny ( . )Jv l
AL IESIACALE M P

X=X (i Cn d

j=l

for n sufficiently large. This coupled with the theorem of Stieltjes-Vitali (see
[Ch, p. 121]) extends the result to C\[D, ET].

LEmMMA 4. Suppose {p,x): n=0, l. 2, ..} are orthogonal polynomials
with recurrence coefficients {a,. n=1,2, ..} and {b,: n=0.1, 2, ...} such
that (1.4) and (1.5) hold, then for every m <n and for x in a compact set K
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of C\[D, EY, with [ D, E] the convex hull of {0} and [b—2a, b+ 2a], one
has

ljln((‘ﬂ 'Y )
(lﬁl(()ll '\.)

<exp Mn, m), (2.18}

where

1‘/{ T (‘k Ml mo 1 (('k):

Mn, m)=— + -
) = e 2 T 1) G & e 1)

with M a positive constant and & the distance between K and [D, E]. If
j<m<n. then
ﬁm(('n'\- ) _ ﬁ/’((.n X)
qm(cn'\‘) ‘1/(('71 -\‘)

<IMn,m)—Mn, j)} exp{ M(n, m)}

'

+exp! M(n, j)}

o',
x max —= 1+ 910 Y) . (2.19)
()1’A<,/(k+ 1) qj((‘n'\’)
with M’ some positive constant, and
Pl €uX) 1‘ < M(n, m)exp{M(n, m};. {2.20)
q”l('\ﬁ’l'v)

Proof. 1n order to prove (2.18) we will use induction on m. For m=0
both the left hand side and the right hand side are equal to one. Suppose
next that (2.18) is true for all integers up to m— 1., then from (2.5)

m o

+ Y {IB, ko mo x|+ 1A,k m, x) }expi{ M(n, k).

k=0

‘p})l(()ll't) < ]
ql”( ()” "\‘ )

(2.21)
Let M be such that for every k
0 0 0
(k+])M<M, (k+1) gy ak*“g Ml <M,
C ) Cy Cy
(2.22)

and let § be the distance between the compact set K and the convex hull
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[D,E] of |0] and [h—2a, h+2a]. then |x—x,, /¢c,| >0 for xe K and
m<n Now (2.14), (2.15) and the fact that

"

Z /-‘/.mqk(-\‘,‘m)z =1, 0 g/\ < - 1
-1

imply that
o —b,

noo3 { . 12 .

" ql\(\ m)f "‘/[ Cy

B,(k,m, x)| < 4‘——’,—<f7‘~ 2.23
B, Y| — 2 v el St kD) (2.23)

" i=1

Equation (2.22) has been used to obtain the last inequality. [n a similar
way
ay o ag

4
a —d
‘A,,(/\’. m. \)‘ < A+ A+l

Cy ¢y
12 - { " 2
% Z /A+llq/\ //\0])} i //m(q/\bl('\_/‘m)}
i1 ‘\7\/A»I(n] F ’Y /mly
M (e )

s .
oc, )" (k+1)

(2.24)

Using (2.23) and (2.24) in (2.11) gives

m YUMo ¢ M* ()
+ - +—=
AZ” {()(',, (k+1) (dc,) (k+1

[)/}I(()N'\.) < l

e S )} expiM(n, k).

Then, using the inequality x <e¢'— 1 with
M ¢ M> (¢)
a( k1) (b)) (k+ 1Y

we find

nro |

I+ Z [exp{M(n. k+ 1)} —exp{M(n k)]

0

ﬁl?l((‘.ll \4)
q')l(( " \ )

This sum is telescoping and results in the inequality (2.18). In order to

prove (2.19) we use (2.5) to find

~ s - 5 mo ] ~", X
pm((n’\)M_p,/((nx) < z ‘{IB,,(/\', . .Y)l+i/1,,(k, m, \')H pk((n\)
qm((,n“\’) (//(CHX) k- qk(cnx)
i
+ Y {IBuk,m, x) = B,(k, j, x)|
ko0
Ak ) Ak ool PR s
qk(('nx)
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The first sum on the right hand side of (2.25) can easily be bounded using
{2.18), (2.23), (2.24) and the fact that M(n, k)< M(n. m) for every k <m,
giving

mo 1

Y Bk )| 4 A (kom x|

ko

ﬁ/\((.”'\A)

(1’,(((‘11’\’)

M ™ 1 ¢ AMZ mo 1 ((. )3
<expi{M(n, m), {‘_ 2. k _: 1 +(5(- )2 ) ki l}
n ko f

"ok

By using {2.6) and (2.7) we also find

0 h+ 1) (ot 1)
. b _b/\ 9 1 1 (/j k
B, (k.m,x)— Bk, J.X)=—5—q;
a/\ + 1 qm q/
and
0 0

a —d;,,d +a

. . At At 1YL k+1
An(k' i, '\‘)7/4!1(/\’* Js '\-): : 4] : 0
k2 Ay
(k + 2) (A +2)
qm 2 q/ k-2
Xk - )
Y q;

where we have dropped the argument ¢, x for convenience. In order to
simplify these last two expressions, we will use the formula

()

da,
(k4 1) (k+ 1y _ (/+l»
qm— ¢ q/ k q/n - ¢ ‘I/\ qm . (226)

/01

This formula is true because for j and & fixed both sides of (2.26) satisfy the
same recurrence relation and for m = j both sides of the equation are zero,
while for m = j+ 1 the left hand side is

1A+1 (A«l)

q/ q/ lq/+l'

This expression multiplied by «}, , is exactly the Wronskian of the two
solutions {g,: j=0, 1,..} and {g""%" : j=0, 1,..}] and since the
Wronskian is independent of j, one may choose j=4k to evaluate the

expression, giving

4]
(Awl (A + 1 _Yk+1
q,; ‘/ q; ‘1/+1_ " qx

Jj+ 1



58 GERONIMO AND VAN ASSCHE

which is exactly the right hand side of (2.26) for m=j+ 1. Using (2.26)
then gives

B, (k,m, x)— B, (k. j. x)=— 0
(/,'! a,| | o

a

}72*/’),\ {C//\(_ ¢y q qlr:’ !

;]

0 0
Ay y "1l Ty

Ak, m, x)— A (k, . X)= 5 -
.H aA i1
(1/\(//\ + Cy (/ L[;,; Y
[[I§ ai)+ { m
Straightforward estimates lead to
M o g’
B (k,m. x)— B,k j,x)|<7———|—
[B,( ) (K, Js )| okt
YR IEEY
Ak, m, x)— Ak, J,x)] < |
” /\ + ] ]({, J - }

This means that the second sum on the right hand side of (2.25) can be
bounded by

PA( X}
qk((n'\

;o1
Y. UBhom, x) = Bk, j, )|+ A,k o x) = Ak, jx)]

k=0

M T
<expiM —— ma +
piM(n, gy nlfl/\ ()’k(//\+1 ‘61/\! ey ol

Now use the expression

Z;cl()Mk("n-\'Hl:(ﬂZ)z i ; 14 I(\fl\l)}‘
A 1

Lk - 5
lq)’((‘"x)lz Cy 1 ! l'\‘i'\‘k.lf'/()u

[Ne, p. 28] to obtain the bounds

jo1 N (au):
Y lgule, P < =5 g, (e, X))
k=0 (()()n)

and

2 jo 1 12
Z Jq/\ " q/\+l((n\)l {Z |l/k((.}1’\.)|2 Z “1k+1(('n>\4”2}
k=0

A =0 k=0

(l“a()

<ﬁlq1 N\‘)[{/’l((’ﬂ'\.)“
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Using these bounds gives

;oo

S B,k x)— Bytk o) 4 1Ak i, ) — Ak, g, )} | DAL

k=0 ﬁlk((’,,-V)
M 14 a o da ¥

<exp{M(n,/)}‘— ma k (‘,)7_*_ /‘1'1] q; (e, .\) ’
dc,0ck<;k+1(3c,)”  (6¢,) | ¢,(c,x)

which then gives the desired inequality (2.19). Finally, we turn to the proof
of (2.20). From (2.5) and (2.18) we find

mo 1

- ]’ < Y (B, ko my )| + Ak, m, x)| ) exp{M(n, k). (2.27)

k=0

I’SH'I(()H 'Y )

(]’)I(CII X )

Now M(n, k)< M(n, m) for every k <m, and by using (2.23) and (2.24) the
inequality (2.20) follows.

3. PROOF OF THE THEOREM

We will first show that the limit exists. Denote by B([0, 1]) the space of
bounded Borel measurable functions on [0, 1] with the supremum norm.
Define the sequence {f,(¢): n=1, 2, ..} in B([0, 1]) by

o p nt ('é'l"‘)
f(1) =Dt e, ), (3.1)
CI[NI](CHX_)

with x in a compact set K of C\[D, E] where [D, F] is the convex hull
of {0} and [h—2a, b+ 2a]. In what follows all results hold uniformly for
x e K. Standard properties of regularly varying sequences [BoSe, BiGoTe,
Se ] say that for a regularly varying sequence {d,: n=1, 2, ..} with index
f >0 one has

Lo de 1

lim — S 3.2
L M R (3:2)
and
1 1.
lim — max %—0, (3.3)

n— s d” O<ks<n k

This and (2.18) show that the sequence {f,} is bounded. The inequalities
(2.19) and (2.20) and the properties (3.2) and (3.3) also show that for every
&> 0 there is a finite collection {E|, .., E,,} of disjoint sets in [0, 1] with
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union [0, 1] and points s, in E; such that for every integer » and for
i=1,...m

SUp 1f”(8) _//I(SI” < &,

ve I

This means that the sequence |f,} is sequentially compact [DuSc, p. 260]

"y

and hence there exists a subsequence #, such that

fi)= lim Zal€n)
. iy tll”r/](('n“-\‘)

exists, and from Lemma 4 one finds that this limit is continuous on [0, 1 ].
We will show that every converging subsequence has the same limit so that
the sequence |f,} converges to this limit /. By (1.5) and Lemma 3 we find
that for 1 21r>5>0

Bs* !
lim »B,([ns], [nr], x)= s

: ——— = Bls. ¥)
e (x—bhs*) —da~s™

and if we use Lemma 3 with s replaced by s+ 1/# and (1.5) then

lim nA,([ns], [at], x)
44as7 !
(X —bs?)? — 4@’ [ x —bs* 4 J(x — bs*) — daPs>)

= A(s, x).

Hence if we take limits in (2.8) (Lebesgue's theorem can be used because
of Lemma4 and the bounds (2.23) and (2.24)) we will find that for
O<r<i

fuy=1+ ' EB(s, x}+ Als, X)) f(s)ds. (3.4)
Y0

Clearly f(1) is differentiable in ¢, so that differentiation with respect to ¢
gives

S =1BlL, x)+ A, x) ) 1)

and the unique solution of this differential equation with f(0)=1 is given
by

f(t)y=exp ‘ﬂ[ {B(s, x)+ A(s, x) | ds.
Y
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Hence all possible limits are the same. Of particular interest is the quantity
f(1) which is exactly the expression on the right hand side of (1.7).

The proof of this theorem simplifies substantially if one assumes that the
recurrence coefficients are “smooth™ in the sense that (1.3) holds. In that
case the polynomials {p,} and {g¢,} have asymptotic behavior given by
[VaGe, Thm 2]

_ lim q,g(vm\‘({ ,
n - )

:1—"/\;/;) n— k=1 =k.on

p.Ae,X)

"

hm

" (

where

' - N . O
o (e x=by o _{ex—by
Zka=il T L Tha= " :
" 2a, " 245

Therefore it is sufficient to investigate the asymptotic behavior of the ratio

(I =)

~0
SRV

which can casily be done without using Lemmas ! -4.

4. SOME EXAMPLES

ExampLE 1: Laguerre Polynomials. The recurrence coefficients for
Laguerre polynomials £(”(x) are given by
a,=/n(n+a)

h,=2n+a+1,

where a > -1 (do not confuse this x with the index of regular variation for
the sequence ¢, ). Denote the normalized Laguerre polynomials by

px) = (— 1) ntf(o+ 1), L1(x).

As a comparison system we will use the orthogonal polynomials ¢,(x)} with
recurrence coefficients
0

a, =n

H

0 _
b, =2n.
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Clearly ¢, =n, a=1, h=2, A= —%/2, and B= —a—1 for this particular
case. Note that »? —4a¢? =0. For the comparison system we have [ VaGe]

X — ~l Is ,
”llm/ \/27m(§ (1";;) Voot dx Mexp {JU L} (4.1)

uniformly on compact sets of C+[0, 4], where

T =24 T 4y

and

-1 ds
H(\) = CXp {.\' l “—7:‘}

fo X7 —dxy

By the theorem we have
. palnx 2o N
lim ZAUAYNS { } (7 + 1+ e )dx},
A MUAY) 0/ ¥ 4xs X =25+ /X" —4xs

where

pAx)= \/"(oc +1),/nt px)=(—1)" L*(x).

Some straightforward integral calculus gives

ol ds 2

0 /32 v-4\s \+\ 24y

Moreover

1 1 {1 14 a(x =25 — \/ .\‘2 — 4.\‘.&')} s

B J 0/ x?—d4xs 2s
ol 1 d(x+ /xt—dxs
=| ——=———ds—« ( e )
Yo/ x?—dxs f0 x4 T — 4
Therefore
. palnx -2 ‘ ", ;
lim plnx) ):exp {v - } ST =47 (2 7
n— 1, (HX) X4y —dx
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In combination with (4.1) this gives

, —_— —2nx
lim 27/ 2mn (— 1) L (nx){x =2+ /X" —4x] "exp { == }
"y X4 X 4x
oy a 12e af . I
=2 X Oy =24 x4y
X {x +/ x4y } Tt —dx) (4.2)

This is in agreement with the asymptotic formula obtained in [ MaVal] (see
also [Val, p.92]) if one takes into account that the square root in the
above formula is negative if x is negative. The obtained asymptotic formula
also agrees with the Plancherel-Rotach type formula given in Szego [Sz.
p. 175].

ExaMpLE 2: Meixner Polynomials. The recurrence coefficients for
Meixner polynomials (Meixner polynomials of the first kind, in Chihara’s
terminology [Ch]) m,(x; f, ¢) are

a,= IL(_ n+f—1)
L

b = (1 +<‘)n+/3('.

! I—¢

where 0 < ¢ <1 and > 0. The normalized Meixner polynomials are

) = (= 1) e, (x: B ),
\/"’ "Il’ ( ,B)H

As a comparison system we now use the orthogonal polynomials ¢,(x)
with recurrence coefficients

0_ N
a, 17()}7
h”:H—Cn
H 17('
so that ¢, =#,
\"7 b 1+¢
a= , = ,
l—¢ 1 —c¢
PR L R
T - 27 I

640 62 1-5
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Note that »” —4a”> = 1. The asymptotic behavior of the comparison system
is given by

lim /2mn 9,1 )—( o) ~2bx 410 M

PR (-H)"
xexp{

uniformly on compact sets of C\[0, h+ 2« ]. where

ot o

t ds }
<0 \;"L\*: —2bx 457

x—b+ N/".\'z —~2bx+ 1}
2u )

ol ds
H=exp<x ‘ T
0 N7 = 2hxs + 57

The relative asymptotic behavior is given by

pulnx) { I
m —— - l Y
v e g, (Rx) o /X" —2bsx+s°

) ) (f— , \
><< b + = /—lh—~) ds}.
l—c¢ (1—¢) \—~/)\+\\ —2hsx + 57

where p,(x) = \,/( B,/ p(x)=(—1Y ¢ inlm,(x: B ¢).
In order to get rid of the integrals dppcaring in these formulas, we use
(with ¢ and b given above)

d .
; s ds(—/)\—l—s‘%\ X2 —=2bsx +57)

= e —
0 X =2bsxHsT 0 —hx s+ T 2bsx + 57
—bhx+ 1+ X2 2hx+1
~] A% ) 43
Og{ (1=bh)x % .

The expression appearing in the relative asymptotic becomes

o 1 ( P 2¢ f—1 )
_J S + . e | ds
0 /X7 —2bsx + s l—c (1—=¢) x—ps+ VX 2bsx + 57

i 1 ( e 2e(f—1)sx—hs— \m"r) .
== T A 2 2 R as
Yo Xt —2bsx+sP\1—c (1—c) 4as*
_ l"‘ _ 1 w <h —1 N /i: Ix—s—/x"—2bxs + s2> s

by - v\ 22 s
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These integrals can then be calculated by (4.3) and

l"‘ X—s -y X2 =2bxs + 57 ds

) XT=2bxs + 57 B

d e wm—
A~ — (Xt 5 — X —2bxs 4 57)
B "‘ X—85— /X —2bxs+ 57 ds ( v

—_——ds
0 s —bhx 45+ /X" —2bxs +5”
=2x(h—1)
d —
— (X 45— ¥ =2bxs + s>
'"‘ dy ( N ) d
X S 5 48
0 (N5 — /X7 2hxs +5T)( by + s+ /X7 = 2bxs 4 57)
d

— (X 45+ ST —2bxs + 57

) l"l (/S( N ) y

- s
0 X+ a4 T =2bxs+ 57

g {.\' + 1+ \2\ —~2bhx+1 }
X

All this eventually results in the asymptotic formula

. ~— om,(nx: B, ¢)
lim (—1)"/2mn " ———""— G

" (2a)" {x —h+ X =2bx+ 1! "

x(1—5)

B {\' —bh+ \/"’.\'2 —2bx+1
- 2

y { —bhx+ 1+ /X" —2bx+1 }

1.2
} (x> —2bx+1) '

y —bx+1+ N/x: —2bx+ 17173
x(1—5b)
x+1+ =2+ 1)
x 2% ’

(4.4)

uniformly on compact sets of C\[0, b+ 2a]. This was already obtained for
x<0 in [MaVa; Val, p. 97]. If one wants to check that the formula
obtained there and (4.4) are the same, then one needs to take into account
that the square root in (4.4) is negative for x negative, so that the function
@ in [MaVa, and Val] in our notation is

D(x)= — (1 —¢) /X" =2bx+ 1.
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ExaMpLE 3: Meixner-Pollaczek Polynomials. The recurrence coef-
ficients for Meixner-Pollaczek polynomials (Meixner polynomials of the
second kind [Ch]) M (x; 0, #) are

a, =0T+ 1 nln+n—1)
b,=(2n+n)o,
where d € R and > 0. The normalized Meixner—Pollaczek polynomials are

53 + 1 n2 ‘
palx)= (L M, (x:0,1).

\m ( r] )/1

We can use the comparison system

/52

= NS ]

"

b =2n
so that ¢,=n and
a= \/'(53 +1, h =24,
A= — M B= —nd.
2
Note that #*—4a” = —4. The asymptotic behavior of the comparison

system is given by

HY 5 5 .
( \,):(a:)1~ (X —dox—4}

qn

Jim \/2mn (zHY

{b '“ dy }
X exp <= S
P 2 \,”',\'2 —4dxs — 4s°

uniformly on compact sets of Cy\{h—2a, b+ 2a], where

{x—20+ V’".\'z —4ox —4)

2a
H=ex {\‘ 'ﬁl —.—_a's }
Pl Yo /X7 = 20xs — 4s7 '

The relative asymptotic behavior is given by
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lim =exp
"o q,,()l,Y)

pu(nx) { ! 1
(

3 e A2
b X —40sx —4s

y ((5 N 200+ Hy(np—1)s > ds},

X =205+ /x7 — 4dsx — 457

! 1
=¢xp { - o
“‘0 X — 405y — 45T

1 x—2is— /X — 4dsx — 4s?
><([(;;-1)f+o‘]+"7 A A s s ‘)m}.

- A

where
R — ((52 + 1 ) 2 ‘
Pox)=/(),/n p,x)= — M, (x:6.n).
Use
d . . T ]
. ds B o ([Ox +25]i4 /X" —4dsx —4s7)

ds

> oas T a3 0 < T P
0 /X7 —20sx —4s” 2ide [ox+2s]i+ X dosx — 4s”
. . AT S——
1 {[(),‘c+2]l+vx'—4bs.\‘4}
=—log

21 (1+0oi)x

and

J*‘ x—2is— V"’/xz —ddsx — 45> ds
0 VXT—4dsx — 457 s
rl 1

=4x(0—1) —_—
“'0 X—2is+ 4/ X° —4dsx — 453

1 S T I)
£ (x4 2is +/x" —4dsx —4s7)
ds
X —_——— ds
—20x —4s+2i /x* —4dsx — 4s”
Vd(x+ 2is + \/xz — 48sx — 4s7)
Yo x4 2is+ /X7 —4dsx — 457
X424+ /X —4dx—4
—2log e .

i

to find the asymptotic formula
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, — M (x5, 1) [
lim 2" ' /nn LCTIRIL Y v =204 —4dx—4} 7

e s n!
OX+ 241 N ﬁ—_m} v
X ~
xX(i—0)

S X204 X Adx—4) 2 I 4y —4) Y

OX+2+1 \/"m}"’ 12
X ~
xi1—0)

N 5 2 ANy o
y {.\ + 20+ x4y 41
RS |

which holds uniformly on every compact subset of C+[» —2a, b+ 2a]. This
15, as far as we know, the first time an asymptotic formula (of
Plancherel Rotach type) is given for these orthogonal polynomials.
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