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The asymptotic behavior of the ratio p"'q,, is given. where [p"lx): n=O. I. ... J

and (q"lx): 11=0.1. 2.... } are orthogonal polynomials with regularly varying
recurrence coefficients that are closcly related. The result is applied to some classical
polynomials. (. 1990 Academic Press. Inc

I. INTRODUCTION

Let (p)x): n = 0, I, 2, ... ] be a sequence of orthogonal polynomials
defined by a recurrence relation

xp,,(x) = (J,,+ 1 p,,+ I(X) + h"p,,(x) + (J"p" I(X)

and suppose that the recurrence coefficients satisfy

( 1.1 )

(1.2)

where c" is an increasing and positive sequence which is regularly varying
with index (J. > 0, i.e.,

cl1 =n'L(n),
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48 (iERONI~O AND VAN ASSCHE

where L: R j -> IR j is a slowly varying function:

lim L(xr)/L(x) = 1 for every I > O.

In [VaGe] the asymptotic behavior of the polynomials p"(c,,x) IS gIven
under the extra condition that

lim Il(a" + 1 - II" )iI'" = a:J.
(1.3 )

lim ll(h"'I-h,,l/c,,=/n.

The result is

,I " _ ) _ {( x _ h )2 _ 4a 2
} 1 4

lim p"(c,,x) { n -k." - .2\k ~ 1 .\

{

·1 ill' }
xexp (hI2) I I " 1 ,

"II vI(X - hs)- - 4(n'~

uniformly on compact sets of [D, E], where [D, E] is the convex hull
of the union of {O} and [h - 2a, h + 2a], and

with z( x) = x + "j x 2
- 1. The root is such that z is an analytic function in

[ -I, I] for which Iz(x)1 > I if x E [ I, I]. The asymptotic behavior
of the product of Zk,,, can be found explicitly when II" = anY and h" = hn>,
but is more complicated if the recurrence coefficients are not so smooth.
We will give a method to obtain asymptotics for the ratio

p"(C"x)/q,,(C,,x),

where {q,,(x): n=O, 1,2, ... } are orthogonal polynomials with recurrence
coefficients {a~:, h~:} for which again

lim II~:/C" = II,
f/-'.(

lim h~:/c,,=h (1.4 )

but for which the asymptotic behavior of q,,( c"x) may be easier to compute
(for instance by using the explicit formulas in [VaGe]). Asymptotics of this
kind are studied by Nevai [Ne] and Matc-NevaiTotik [MaNeTo] for
converging recurrence coefficients (orthogonal polynomials in M(a, h)). It
is clear that the recurrence coefficients {a", h,,} behave asymptotically like
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the comparison coefficients {a~:, h~~ j, but in order to make our method
work, we need to assume more, namely,

lim
1/- I

n(a;: - Qn)/ICn == A~

(1.5 )

lim l1(h~: - h")!c,, = B,
n ---+ 'I

where A and B are two real numbers, This assumption and the regular
variation imply

I, (ao -I )/. -AI'> I1m n ["s ] (["s 1 1 ( " - •

(1.6 )

I, (ho h )" - B ,> I1m n [m1- ["sl/(,,- .1

for every s> 0, where [x] is the integer part of the real number x. The
condition (1.5) is natural: it holds for instance for all Freud weights

with m a positive integer, in which case A and B are zero [MiNeZa]. Tn
this paper we will prove the following result for the polynomials

i\(x) = TI (a//a~) p,,(x),
I~ I

THEOREM. Suppose {p,,(x): n = 0, 1. 2, ... } are orthogonal polynomials
]J"ith recurrence coefficients [a,,: n = I, 2, .. ,) and {h,,: n = 0, 1, 2, ,.. } such
that (1.4) and (1.5) hold, then

lim

(1.7)

uniformly on compact sets of 1[\ [D, E], where [D, E] is the convex hull oj"
{o} and [h - 2a, h + 2a ].

The asymptotic behavior on the interval [D, E] is more difficult to
handle because the zeros of p"(c,,x) and of q"(c,,x) are dense on that inter
val: one actually knows the asymptotic distribution of those zeros [Val,
pp. 121-124]. This means that both pJc"x) and q"(c,,x) behave in an
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oscillatory way on [D, E] and the ratio on the left hand side of ( 1.7) has
many zeros and poles on [D, E]. Note that for h2 ~ 4a 2 > 0 the interval
[D, E] is different from [h ~ 2a, h + 2a]. Strong asymptotics for polyno
mials orthogonal on an infinite interval have recently been obtained. In
these studies (see Lubinsky and SalT [LuSa and references therein]) one
begins with the weight function instead of the recurrence coefficients.

2. PREl.IMINARY RESULTS

Given the sequences [a~:] and (h~:], a~; , 1 > 0, h~: E IR (11 = 0, I, 2, ... ) we
define q;,k I(X), k = 0, I, 2, ... to be the solution to the following equation

satisfying the boundary conditions

(/k\(X)=O.

(note that q;,o'(x)=q,,(x)). One easily verifies that, for k fixed, q;,:1 k(Xj,

q;,:~}l_l'), and q;,:+}) 2(X) are three sequences (in the variable m) that
satisfy the same recurrence relation of second order. Therefore these three
sequences are linearly dependent and hence there exist C] and C 2 (possibly
depending on k but not on Ill) such that

By choosing m = k + I and m = k + 2 one obtains C 1 and C 2 and the resulting
formula is

Define

p,,(x) = n (al/a~)) p,,(x),
I 1

(2.2)

then the recurrence relation (1.1 ) for these modified polynomials becomes

(2.3 )
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Multiply (2.1) by J\(x) and (2.3) by q:~ + } I ] (x) and substract the obtained
equations, then one finds

Summing from k = 0 to 111 gIves (with the appropriate boundary condi
tions)

1(X)} p,(x).

(2.4 )

This comparison equation will play an essential role in what follows (see
also [GeVa, (IlLS); Val, (2.2.7)] for this equation). Changing x into c"x
in (2.4), then dividing by q,)c"x), we find

!II I

pl11(c"x)/ql11(c"x) = 1+ I :B,,(k, III, x) + A,,(k, 111, x)} pdc"x)/q,(c"x),
. ,~()

(2.5 )

where

B (k 0) = h~ - h, _(_'1/_ qdcl/x) q~,~ t} I I(CI/X) ')
n ,m,.\ 0 (~.6)

('n G k + I qm(cnx)

q,(CI/X) (/~+I -ilk + 1 (/~ + 1 +(/'+ 1
An(k, 111, x) = ---"---'--'--(c-)----~

q,+I(CI/X) CI/ (/'+1

CI/ q, + I(CI/X) q;,~ +;1 2(CI/X)
x-(-)-

(/, + 2 ql11(CI/X)

We can write this by means of an integral as

(2.7)

(" [nfl-'ll

P[I/I](CnX)/q[I/I](CI/X) = 1+ I n{ BI/( ens], [nt], x) + AI/( ens], [nt], x)}
"0

x p["sj(c"x)/q[1lI1(c"x) dol'. (2.8 )
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We now need a few lemmas to show that the integrand converges to some
function that we can find explicitly.

LEMMA I [NeDe, Lemma 3]. Suppose

lim a~:! C" = a > 0,

\I'here e" = n" L(n), l\"ith L slOl\"ly l'arying and Y. > O. If Po is a spectral
measure j(ir the orthonormal polynomials :q,J,): n = 0, I, ... :. then

, I c/> I 2" fix) d.\
lim I f(x/c"j{ q,,(x) : 2 dpo(x) = - I
,,~'" IT·/> 2" v 4a2 -(x-h)2

fCJr every polynomial f

COROLLARY I. Given the hypothesis of Lemma and 0:( s < t:( \

1"11

lim L i·/. r "lj[ql"sl(x/. I"lj):2(xi. I "lj!c,,)\!
/~ I

(2.9)

1 (.h t 20

=-1n ..;h la

.FJr every integer M;;, O. Here

(xs'l)\!
/ 0 , dx

y/4a- - (x - h)'
(2.\0)

and x/." arc the ::eros ofq,,(x).

(2.\1 )

Proof: Since t > s it follows that for n sufficiently large 2[ns J+ M :(
2[ntJ - 1 so that by the Gauss-Jacobi quadrature formula

1"11
'1\' I ( ) I ' ( /)ML.. )'j.l"/Jiqr",J x/.I"I] J' x/.r"IJ/c"
/~ I

The result now follows using Lemma \ and the fact that

lim
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LEMMA 2. Suppose

lim h~:!c" = h,

\rhere c" = n"L(n), \rilh L slOlt'/r mrring and (1) O. Thcn jilr 0 < s";: I,

(2.12)
2as"

lim q[lI,j(c"x)!q["sl I I(C"X) = ---------;=====:====;0=:;=
x - hs' + y (x - hS')2 - 4a2s2x

unifiJrlnly on compacl sels of [D, E], \vhere [D, E] is the COilvex hull of
(OJ and [h-2a, h+2a].

Proof See [Val, p. 117].

LF\1MA 3. Suppose

\t'here 1'" = n' L(n), It'ith L slmrlr mrring and '.X> O. Then jilr I ~ t > s ~ 0

(2.13 )

unifrJrlnly on compact sets of [D, E] where [D, E] is the convex hull of
[0] and [h - 2a, h + 2a ].

Proof Let us first of all note that the function appearing on the left of
(2.13) is a rational function with poles at the zeros of the denominator.
A decomposition into partial fractions gives

I q, ( " ) q (A , I) (,,) "bl".I'
_(_I_ n "(.\ I' = L~
a Atl q"x I~I'\-'\I."

(2.14)

where

I (.) {A + II ( )h = __ qA X,." q"-A 1 X;."

I·" a~.;. 1 q;,(x;.,,)

and x/." are the zeros of q,,(x). Since q,,(x) and q;,A +A
1I

I (x) satisfy the same
recurrence formula for n > k, the following Wronskian identity holds

so that the residues are given by

(2.15 )
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where il,II is given by (1. 11 ), Therefore the left hand side of (2,13) becomes

Since

r flt 1 ' \ . t ~I l'I,III/II(![lisl(,\,.,rll/]) J

I 1 .\"-.\"1-[11/\:('/1

(2,16)

max Ihil+2
! /I J ()

max a/+ J

J n 1
(1.17)

(see [NeDe, p, 1188J) (1.16) can be rewritten for Ixl sufficiently large as

'"=I
[III]; r(1 (, .)12 (, /. )"'tJ+ L '1,lllIlt [liS] 'I/~/]! '1,lntl/(1I

i~1 x-;>;/.[III]/(ll .\

Consequently, for every 111 and Ixl sufficiently large (2.17) and Corollary 1
imply that

III 1 1 i'/' I 211 (ys').k dy .['I J:+I - I ----::===::oc=======;:
k.O'\ IT· h 20 V 4(r - (.I' - h)2

Here i' = Ihj + 2a and d is the distance from x to [D, E]. Now letting
111 -+ ex and using the fact that

1 ,h I 2a dy

~ t 20 J4a 2 - (y - h)2 X - l'S' ,,/(x - hS')2 - 4a 2s2'

gives the result for Ixl sufficiently large. Now

I

I III I ' J (. ) I 2
1 II AI'[llI~(qr:"l ,\/}:/] J ~_

i I .\ -'\/.11111/(11 d

for n sufficiently large, This coupled with the theorem of Stieitjes .Vitali (see
[Ch, p, 121]) extends the result to [D, E].

LEMMA 4, Suppose: PII(X): n = 0, I, 2, ,": are orthogonal polynomials
with recurrence coefficients : all: n = J, 2, ".: and: h ll : n = 0, I, 2, ,,': such
that (1.4) and (1,5) hold, then fCJr every m ~ nand fc)r x in a compact set K



ASYMPTOTICS FOR ORTHOG01'iAL POLY"'OMIALS 55

of [D, E], with [D, E] the conwy hull of [OJ and [h-2a, h+2a], one
has

\I'/zere

I

IJ,,,(C,,X) 'I ::( exp M(n, m),
(j,,,(c,,x)

1\4 HI I C
k

M 2
HI I (cd 2

M(n,m)=-.- L --+-,-, L -.-
c)C"k o(k+l) (c)C")-k o(k+l)

(2.18 )

lrith 1\4 a Pos/tll'e constant and () the distance hetwccn K lind [D, E]. If
j::( m ::( n, then

M'
+ exp[ M(n,j)} -'1

c)'C"

Ck { l(ji+I(C"X)I}x max --- 1+ ,
° k<.I(k+l) (ji(C"X)

with j\4' some positive constant, and

I
fiHl(CnX) I f I
:....:..:c--,,__ I ::( M(n. m) CXPt M(n, m) J'

(j"J,,,x)

(2.19)

(2.20)

Proal In order to prove (2.18) we will use induction on m, For m=O
both the left hand side and the right hand side are equal to one. Suppose
next that (2.18) is true for all integers up to 111-1, then from (2.5)

!P
- (c y) I HI I. m -11- - \ T _ T _ - 1 f ' 1::( 1+ LIIB,,(k, m, x)1 + IAJ1(k, m, x)1 f expIM(n, k) J'
qHl(c"x) k~O

(2.21 )

Let M be such that for every k

I

hO-h I
(k+ 1)~ ::SM,

l
aO -a. I(k + 1) k.,. ICk k, I ::( M,

(2.22)

and let b be the distance between the compact set K and the convex hull
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[D, E] of :0: and [h - 2a, h + 2a], then i\ -\,/II/cl/l > () for x E K and
m~ll. Now (2.14), (2.15) and the fact that

I i'/I/Iqd x //II)C = I,
/ I

O~k~tIl-,1

In a similar

imply that

I
h~-hkl ~ i/ll/:qk(X/./II):c Al C,

iBI/(k,tIl,x)i~ -.-.L 1,.\'_.\' 1 ~-)'--(k-'+-I)
(1/ / ~ 1 1/ 1 ( CI/

Equation (2.22) has been used to obtain the last inequality.
way

(2.23 )

(2.24)
M 1 (cdC

,<---
"(()e,Y (k + I)'

Using (2.23) and (2.24) in (2.11) gives

I

I)",(CI/X) I 111",1 { AI c, M C (CdC} .1 Lf k I
~ I + L. -,----+-.-,-- eXP 11Vl(ll, )j'

q",(cl/x) , Il ()cI/(k+l) (bcl/)-(k+l)

Then, using the inequality x < e' - I with

A1 C/, M C (cdC

.\ = ()e 1/ (k + I ) + (()c 1/ ) C (k + I )'

we find

1

- ( ,) I /II 1P", C//'\ f. I > J .. 1
~I+ I [exPI M (Il,k+l)J- exp I M(Il,k)J].

ql/l(C"X) , Il

This sum is telescoping and results in the inequality (2.18). In order to
prove (2.19) we use (2.5) to find

I

p",(CI/X) __ pi.(CI/X) 1 ,< I/~ 1 JIB (k-: )1 + IA (k ')11 Ip,(C"X) I-.....:::: L ( n. ~ I n~ x Ii ~ ,n~ x J

q",(c"x) q,(cl/x) 'i qk(C"X)

/ 1

+ I : IBI/(k, til, x) - BI/(k, j, x)i
k 0

_ '. _ I Ipk(CI/X) I+ iAI/(k, tIl,\) - AI/(k, j, x)1 J ( •
(lk ('I/x)

(2.25)
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The first sum on the right hand side of (2.25) can easily be bounded using
(2.18), (2.23), (2.24) and the fact that M(Il,k)~M(Il,Ill) for every k~lll,

gIVIng

{
M '" I. 'vi:' III I ((' ):'}

f . I ( k I k
~exPIM(n,Ill)J -,- I '--1+-'--' I '--1 .

b('lIk ;J\+ (b('II)-k jJ\+

By using (2.6) and (2.7) we also find

and

{q
lk+:'1 qlkt.:'I}
Jllk'1 ~

X qk - ,
q", q;

where we have dropped the argument ('IIX for convenience. In order to
simplify these last two expressions, we will use the formula

(2.26)

This formula is true because for} and k fixed both sides of (2.26) satisfy the
same recurrence relation and for III = j both sides of the equation are zero,
while for 111 = j + I the left hand side is

q lk+11q.. _/lk t II q
; k I (! k I ; + I'

This expression multiplied by a~)+ 1 is exactly the Wronskian of the two
solutions {qi: j=O, I, ... } and {q~k:lll: j=O, I, ... } and since the
Wronskian is independent of j, one may choose j = k to evaluate the
expression, giving
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which is exactly the right hand side of (2.26) for 111=1+ 1. Using (2.26)
then gives

Straightforward estimates lead to

, AI ('A I Cf A 1

2

IBII(k,tn.X)-BII(k'J,X)I~-.---.- .
()ell k + 1 Cf/

. A1
2

('A !CfAC/k t I
IAII(k, tn, x)-AII(k,j, x)1 ~-.--- -'--1."-'

()ell k + I I Cf/ J -

This means that the second sum on the right hand side of (2.25) can be
bounded by

/II [IBII(k. m, x) - BII(k. I, x)1 + IAII(k, tn. x) - A)k. j, x)1 } IfiA(('II
X

) I'

A~O CfA(('II X )

M (' / I

~exp[M(n,/)}) 'I I" max-
k

Al I {ICfAi 2 +IC/kc/k+II).
(('II Cf/ -0 A /' + A ()

Now use the expression

[Ne, p. 28] to obtain the bounds

and
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Using these bounds gives

59

which then gives the desired inequality (2.19). Finally, we turn to the proof
of (2.20). From (2.5) and (2.18) we find

I

jJ ( . x) I 11/ 1
'---',-"--",'---(''---'·'----1 ~ L {IB,,(k,m,x)I+IA,,(k,m,x)l}exp{M(n,k)}.
q".(c"x) k ()

(2.27)

Now M(n, k) ~ M(n, m) for every k ~ m, and by using (2.23) and (2.24) the
inequality (2.20) follows.

3. PROOF OF THE THEOREM

We will first show that the limit exists. Denote by B( [0, I]) the space of
bounded Borel measurable functions on [0, 1] with the supremum norm.
Define the sequence U:,( t): n = 1, 2, ... } in B( [0, I]) by

/:,(t) = fir,l/l( C" x),

qr"rl(c"x)
(3.1 )

with x in a compact set K of iC\[D, E] where [D, E] is the convex hull
of {o} and [b - 2a, b + 2a]. In what follows all results hold uniformly for
x E K. Standard properties of regularly varying sequences [BoSe, BiGoTe,
Se] say that for a regularly varying sequence {d,,: n = 1, 2, ... } with index

Ii>°one has

and

"dk Ilim , L -- -
,,~£ d" k ~ () k + I Ii

. 1 dkhm - max -=0.
11 --+ J~' d" 0 ~ k ~ n k

(3.2)

(3.3 )

This and (2.18) show that the sequence U:,} is bounded. The inequalities
(2.19) and (2.20) and the properties (3.2) and (3.3) also show that for every
/: > °there is a finite collection {E 1 , ••• , EII/} of disjoint sets in [0, I] with
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union [0, I J and points Sj in E j such that for every integer n and for
i= I, ... , 111

sup If,(s) -f,Jljll ~ I:.
\-(-/::

This means that the sequence U;,] is sequentially compact [OuSc, p. 260J
and hence there exists a subsequence II, such that

exists, and from Lemma 4 one finds that this limit is continuous on [0, I].
We will show that every converging subsequence has the same limit so that
the sequence U;,) converges to this limit I By (1.5) and Lemma 3 we find
that for I ~ r > .I ~ 0

and if we usc Lemma 3 with .I repl:iced by S + I/n and (1.5) then

lim nA II ( [nsJ, [nr]. x)

4.4(/.\"> I

". '(x ~ hs')2 ~ 4([\·2, :x ~ hoi' + J (x - hs')2 - 4(/2S 2')

=A(s, x).

Hence if we take limits in (2.8) (Lebesgue's theorem can be used because
of Lemma 4 and the bounds (2.23) and (2.24)) we will find that for
O<r~1

"

/(1)= I + I :S(s,x)+A(s,x): f(s) dol.
"'()

(3.4 )

Clearly f( 1) is differentiable in I, so that differentiation with respect to r
gIVes

f' (r ) =( B(t, x) + .4 (1, x) } f(f)

and the unique solution of this differential equation with f(O) = I is given
by

f(r)=exp rl

{B(s,x)+A(s,x)}ds.
'0
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Hence all possible limits are the same. Of particular interest is the quantity
f( 1) which is exactly the expression on the right hand side of ( 1.7).

The proof of this theorem simplifies substantially if one assumes that the
recurrence coefficients are "smooth" in the sense that (1.3) holds. In that
case the polynomials {PII} and ((jll: have asymptotic behavior given by
[VaGe. Thm 2J

where

~() = ~ ((IIX - h~)
- k.1I - ') () .

• a k

Therefore it is sufficient to investigate the asymptotic behavior of the ratio

(n~ ~ I '::k,,)

(n~ 1 '::~II)

which can easily be done without using Lemmas 1-4.

4. SOME EXAMPLES

EXAMPLE 1: Laguerre Polynomials. The recurrence coefficients for
Laguerre polynomials L;,'I(X) are given by

all = ,,/11(11 + ex)

hll =211+y'+ 1,

where if. > - I (do not confuse this ex with the index of regular variation for
the sequence (II)' Denote the normalized Laguerre polynomials by

P,Jx) = (-1)" \/II!!(if. + I}" L~,'I(X).

As a comparison system we will use the orthogonal polynomials (j1l(X) with
recurrence coefficients

a;; = II

h~: = 211.
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Clearly ('11= n, a = I, h = 2, A = - Ci/2, and B = -Ci - 1 for this particular
case. Note that h2 -4a2 =0. For the comparison system we have [VaGe]

/~qll(nx)
lim / 2nn~~ =

v (::H)"

uniformly on compact sets of [0,4], where

(4.1 )

:: = t(x- 2 + ,,/x2-4x)

and

H(x)=expJ\!,1 dol l
1 "()" x 2- 4x.lS'

By the theorem we have

where

-(.)- /( +1) /, (·)-(_I)"L IY I(.)P11'\ - "Ci II! n. P11'\ - II .\.

Some straightforward integral calculus gives

r l dol 2

Lv/X2 -- 4x.l .\ + /x 2- 4x

Moreover

II . 0 1 SCi + 1+ 2Ci.l 0 l dol
"0 vi.lc - 4xs 1 x - 2.1 + ,,/.c - 4xsS

.--=--~

=lr1
1 {Ci+I+:;«(X-2.1- J X

2
-4XS)}dS

"0 /x 2 - 4n 2.1". ..
r

l 1 1'1 d(x+/x.
2
-4x.l)

= I d.l-Ci
"() yx2-4xs o() x+,,/x2-4xs

Therefore

lim /J,,(nX)_ex p { -2l ~X+I\2_4x:Y(2x) y

qll(nx) - x +" x 2_. 4xS
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In combination with (4.1 ) this gives

63

='1 'l 12\. ,J\._)+ /\,2_4,)12
~ - t· - v- . )

x J v+ /\-2_4>:)7 1 \,2_4\,1. 1.4
( ., 'v' . J I- - 1 .

{
- 21lx }

II exp
X+ ,,;x 2 -4x

(4.2)

This is in agreement with the asymptotic formula obtained in [MaYa] (see
also [Val, p. 92]) if one takes into account that the square root in the
above formula is negative if x is negative. The obtained asymptotic formula
also agrees with the Plancherel-Rotach type formula given in Szego [Sz,
p.175].

EXAMPLE 2: Meixner Polynomials. The recurrence coefficients for
Meixner polynomials (Meixner polynomials of the first kind, in Chihara's
terminology [Ch]) /ll1I(X; Ii, c) are

v e .'~----

(/1/ = -- v n(n +P- 1)
1-('

(l+e)I1+lic
h ll = .

I-e

where 0 <. e <. 1 and P> O. The normalized Meixner polynomials are

ell -+ .1

p)x) = (-I)" /III/(x; 13, c).
v ll ! (fnl/

As a comparison system we now use the orthogonal polynomials qll(x)

with recurrence coefficients

( e
aO=~11

1/ I-e

hO = 1+ e 11

II I-e

so that el/ = 11,

~

/ ('

a=~
I-e'

- ,./c f3 - 1
A=----,

1- e 2

l+e
h=-,

I-c

lie
B= ---.

1-('
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Note that h= - 40= = I. The asymptotic behavior of the comparison system
is given by

,~q)f/x) ]" 1.1
lim /2Jrf/--=(iC) -]r 2hx+ I,'

v (::H)" I

x exp f~ I" I -=,~d=s==o'}
,., /""'l 2h '
- '0 v x- - x + ,1'-

uniformly on compact sets of [0, h + 2(/ J. where

[x - h + Jx 2 -- 2hx + I :
20

f
,.1 lis }

H = exp x I ! .

'0 ,,/ x 2- 2hxs + .1'2

The relative asymptotic behavior is given by

. iill(f/x) f I'] I
hm ---. = exp - !, ,

II ~ f, qll(I1·\) '0 V x- - 2hsx + s-

(
fJc 2c (Ii - 1).I' \)}

X --+ , lis .
1- c (1 - c)~ x - hs + Jx 2_. 2hsx + .1'2

where ii,,(x) = v / ( {j),)I1! p,J") = (-I )" c" =/11! m,,(x; fi. c).

In order to get rid of the integrals appearing in these formulas. we use
(with (/ and h given above)

(4.3 )

x= - 2hsx + ,1=)

ds

II
-(-/1.\:+,1'+

.] lis'] lis

t V x 2- 2hsx + .1'2 = t -hx + .I' + Vi x= - 2hsx + .1'2

f
- hx + 1+ '11\,2 -- 2hx + 1'}

=log .
(1 - h)x

The expression appearing in the relative asymptotic becomes

.] 1 (fJc 2c (fi-I)s )-J --+ , ds
o Jx 2- 2hsx + .1'2 1 - c (1 - c)~ x - hs + Jx= - 2hsx + .1'2

~---~

,] 1 (fiC, 2c( fi -- 1 ).1' X - hs - v i ,,= -. 2hxs + ,1'2\)=-1 --+, " lis
'ovx2-2hsx+s21-c (I-c)- 4ir.\'-

I
r] 1 , (h - 1 fi - 1 x - ,I' - v/x= - 2hxs + .1'2) .

= - --= --+-- dl.
I .., ., 11

'0 v/ x -· 2hsx+s- ~ - .I'



"I X - .I - y/x" - 2hxs + .I" dol

t ,,,,'x" - 2hxs + .I" .I
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These integrals can then be calculated by (4.3) and

d
, ,-(x+s- y x"-2hxs+s:')

=
1

,1 .\ - .I - ..... r - 2hxs + .I' dol
----'--------------;=0======0 ds

• 0 .I - hx + .I + ..... \.:, - 2hxs + .I:'

= 2x(h - I)

d- (\ + .I - / x:' - 2hxs + .I:')
,I ds . .....

x I ds
"0 (x - .I - ,,/x" - 2hxs + .1:')( -hx + .I + V x:' - 2hxs + .I:')

d . , 1

- (x + .I + y/ r - 2hxs + ,I')
"I cLI'

= -2 I , , ds
'0 x + .I + ,,/x:' - 2hxs + .I:'

{

X + I+ Jx:' - 2hx + I}
= -21og .

2x

All this eventually results in the asymptotic formula

!~ ,m)nx; p, c) r-=-,----.

lim (-1)1y/2nnc" c
1 (2a)" [x-h+ v r-2hx+ 1] "

1/---> j n.

x { - hx + 1+ y/x:' - 2hx + I} ,,,
x( 1- h)

{

X - h + /x:' - 2hx + I} 1 :' 1 1 4
= " [ r - 2hx + I :

2

x { - hx + I+ JX:' - 2hx + I} I,:'

x(l-h)
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x {\ + I + V .X:' - 2h.x + I } Ii 1

:2>:
(4.4 )

uniformly on compact sets of 1[:\ [0, h + 2a]. This was already obtained for
x<O in [MaVa; Val, p. 97]. If one wants to check that the formula
obtained there and (4.4) are the same, then one needs to take into account
that the square root in (4.4) is negative for x negative, so that the function
f/> in [MaVa, and Val] in our notation is
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EXAMPLE 3: Meixner-Pollaczek Polynomials. The recurrence coef
ficients for MeixnerPollaczek polynomials (Meixner polynomials of the
second kind [Ch]) MI/(x;(),17) are

aI/ = ,.j()2 + I ,,/n(11 + 11- 1),

171/= (211+1/)(),

where 6 E IR and II> O. The normalized Meixner-Pollaczek polynomials are

()" + 1) 1/2 •

PI/(x) =. MI/(x; b, II)·
In! (1])1/

We can use the comparison system

so that ('11=11 and

a=)()2+1,

JP+!(I]-l)
A = - 2 '

h = 2(),

Note that 17 2
- 4a 2 = - 4. The asymptotic behavior of the comparISon

system is given by

/-qll(nx) l'
lim2rrn ((r) . :x 2 -4(h-4} 14

1/ -. f V (zH)" = -

x exp S~ ( ds }
12"0 vx2-46xs-4s2

uniformly on compact sets of [17 - 2a, h + 2a], where

I '), !, 4' 4 1__ lX-~o+V_c- uX- j

- 2a

{

-I ds }
H=exp x .LJx 2- 26xs - 4s2

The relative asymptotic behavior is given by
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lim fJ,,(I1X) = ex {_ r1 -----r==;====~
" • l q,,(I1X) P '0 Jx 2- 4c5sx - 4.1'2

(
_ 2(c5:'+I)(tl-l)s )}

x 0+ , ell' ,
X - 2bs +~x:'- 4c5sx - 4.1':'

=exp {- tl

JX2-4~.n-4s:'

(
tl I >: ')i\' x:' - 4c5sx - 4.1':') }

X [ (tl - I )i + c5] + ; . - ~, - V ds ,
.!. .I' ,

where

_ _ I~-/-' . _(c5:'+I) ,,:,
p,,(x)-y (1]),,/11. P,Jx)- M,,(x;c5,t71·

11!

Use

d _ '0. ,:
- ( [(h + 2.1'] i + Ie - 40sx - 4.\')

,.1 ds 1.lds 'v

I =-1 ' ds
'0 Jx 2- 2c5sx - 4.1'2 2i· o [c5x + 2.1'] i + ~x:' - 4c5sx - 4.1':'

=~Io {[c5X+2]i+ J X:'-4bSX-4}
2i g (I +c5i)x

and

.) X - 2is - Jx 2- 4c5sx - 4.1':' ds

L Jx 2- 4c5sx - 4.1':' .I'

.1 I
= 4x( c5 - i) I ---f',==;====~

'0 x-2is+ylx2-4c5sx-4s:'

d , ! 7. 7

- (x + 21.1' + V.e -40sx-4,\')
x ds ds

2 ' 4 ')' ! 7 4' 4 7
- uX - .I' + ~I V .e - uSX - s-

r
i d(x + 2is + Jx:' - 4c5sx - 4.1':')

= -2
'0 x + 2is + Jx:' - 4c5sx - 4.1':'

_ {X + 2i + Jx:' - 4c5x - 4}
- -2log 2x '

to find the asymptotic formula
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-:-" . I :- M,,(x; t5, II) .1. ..,. 0

lim.!. v 7[}/ 1'\ - Lt) + v r - 4th - 4 :
,,~ f. n l

11.\ i~.

14

x St5.\ + 2 + i VX2 - 4th - 4(1"

1 xU - t») (

X {\ + 2i + yX 2
- 4th - 4r

2\ J

II'

which holds uniformly on every compact subset of [h - 2(/, h + 2a]. This
is, as far as we know. the first time an asymptotic formula (of
Plancherel Rotach type) is given for these orthogonal polynomials.
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